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Abstract
Numerical simulation of physical phenomena is now an

accepted way of scientific inquiry. However, the field is still evolv-
ing with a profusion of new solution and grid generation tech-
niques being continuously proposed. Concurrent and retrospective
visualization are being used to validate the results, compare them
among themselves and with experimental data, and browse through
large scientific databases. There exists a need for representation
schemes which allow access of structures in an increasing order of
smoothness (or decreasing order of significance). We describe our
methods on datasets obtained from curvilinear grids. Our target
application required visualization of a computational simulation
performed on a very remote supercomputer. Since no grid adapta-
tion was performed, it was not deemed necessary to simplify or
compress the grid. In essence, we treat the solution as if it were in
the computational domain. Inherent to the identification of signifi-
cant structures is determining the location of the scale coherent
structures and assigning saliency values to them [22][23]. Scale
coherent structures are obtained as result of combining across
scales the coefficients of a wavelet transform. The result of this
operation is a correlation mask that delineates regions containing
significant structures. A spatial subdivision (e.g., octree) is used to
delineate regions of interest. The mask values in these sub-divided
regions are used as a measure of information content. Later,
another wavelet transform is conducted within each sub-divided
region and the coefficients are sorted based on a perceptual func-
tion with bandpass characteristics. This allows for ranking of struc-
tures based on the order of significance, giving rise to an adaptive
and embedded representation scheme. We demonstrate our meth-
ods on two datasets from computational field simulations. Essen-
tially we show how our methods allow the ranked access of
significant structures. We also compare our adaptive representation
scheme with a fixed blocksize scheme.

CR Categories and Subject Descriptors: I.3.2 [Computer
Graphics]: Graphics Systems; I.3.8 [Computer Graphics]: Applica-
tions; I.4.2 [Image Processing]: Compression (Coding).

Additional Keywords: wavelet transform, structure detection,

human visual system, progressive transmission

1 INTRODUCTION
Given the advances in hardware and the proliferation of new

numerical and data analysis techniques, the solution grids for com-
putational simulations are continuously becoming larger. For
instance, even100 time steps using a grid size of69x43x15 from a
computational field simulation (CFS) requires the storage of the
computational grid, a vector field (velocity) and two scalar fields
(density, energy), all in floating point format, making the storage
requirement136 Mbytes. Bothconcurrent and retrospective visu-
alization are employed to understand the results of a simulation.
The size of the datasets is a burden, especially when they are trans-
mitted over a slow network. It is not uncommon that the domain
for a simulation is spatially divided into several zones and executed
on a multicomputer or a cluster of networked processors. Each
zone has its own geometric grid and a designated processor, or
solver. Visualizing the solution data from the solvers in real-time or
near-real-time provides instantaneous feedback and therefore
allows tracking of the simulation. Such systems are becoming
increasingly available [9][20]. In this case, visualization is done in
a distributed manner, i.e., the solution data are transferred from the
solvers to a graphics workstation over the network and selectively
visualized. Therefore, it is useful for the datasets to be stored and
transmitted in a compressed format. Even more important for solu-
tions which have not converged yet is a quick meaningful preview
so that the simulation can be steered.

A coarse-to-fine progressive display is often used. However, it
may be useful to display the most significant structures first. In Fig.
1 we show an iso-surface rendering of pressure around a turbine.
The structures are ranked in terms of singularity; it is useful to see
structureA in its entirety before structureD which is far smoother.
It is easier to gauge the shape ofD than ofA and hence a coarser
rendition of D is sufficient. The structures are displayed again in
Fig. 1b using a rate (percentage of complete information) of 20%.
The structure A is faithfully rendered while structure D is quite dis-
torted. The embedded visualization paradigm allows a ranking of
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Figure 1. Structure Significant Visualization: (left) Isosurface rendering of pressure around a turbine is depicted. The
structures A, B, C, and D are ordered in terms of increasing smoothness. (right) Iso-surfaces rendered with only 20% of
wavelet coefficients.
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structures and can be very useful for concurrent visualization.
This paradigm of visualization is different from displaying a pro-
gressively smoother version of the complete rendering. We
believe that progressive refinement is less useful for scientific
visualization. Given the loss of detail in the subsampled images,
features cannot be easily discerned. A computational scientist
cannot learn much about the physical phenomenon from a sub-
sampled image. Also, it is not clear that the bandwidth is effi-
ciently utilized.

The needs for retrospective visualization are equally strin-
gent. Given the increased use of computational methods to solve
engineering and scientific problems, large archival collections of
datasets now exist and terascale visualization is no longer a con-
cept but a need for scientists working on large-scale problem.
There is a need therefore to index, browse and retrieve through a
scientific database. The indexing can be in the form of a coarse-
to-fine structures, while browsing and retrieval require the dis-
play of structures as described in Fig. 1. Also, computational sci-
entists often need to compare the results of a simulation with
another (Fig. 2; same physical condition with different solver)
and with experimental data. Thus, methods which allow side-by-
side comparison of datasets based on the structures will be use-
ful. Even more useful will be a method which will display pro-
gressively refined structures based on some parameter like rate.
Once again, an embedded scheme can be employed to enormous
benefit. Transform coding schemes have been used for efficient
transmission and compressed storage of images. The discrete
cosine transform and the wavelet transform have been used for
this purpose. Both lossy and lossless schemes have been used to
store and transmit datasets. The new paradigm of visualization
proposed here can also be supported by the same transform cod-
ing and multi-resolution framework.

We now examine some characteristics of CFS datasets
which require special consideration when designing representa-
tion schemes:

• CFS datasets are generally very sparse, since the computational
experiment attempts to study and focus on very specific phenome-
non and sometimes at very specific locations in the domain. Most
of the information is packed in a very small portion of the entire
volume irrespective of the grid topology used.

• CFS datasets sometimes have sharp singularities like a shock.
However, as Fig. 2 shows the singularities are not very sharp and a
method like edge detection will fail to detect regions of activity.
Wavelet methods on the other hand are often able to locate the sig-
nificant structures.

• For computational field simulations it is important that any repre-
sentation be inherently lossless. However, it is also imperative that
the compression scheme allow for selective display of important
structures in a dataset.

• Finally, CFS datasets come in a variety of shapes and sizes, often
dictated by the underlying geometry and the desired resolution of
structures. Many multiresolutional schemes imposepower-of-2
restrictions on the resolution. A commonly used solution is pad-
ding the dataset untilpower-of-two resolutions are obtained. This
increases the quantity of data that must be transmitted, sometimes
significantly. Thus, it may be worthwhile to partition the dataset
into blocks wherein the wavelet transform can be applied.

Proposed Method - To satisfy all our requirements of concurrent
and retrospective visualization, we make use of a technique which
identifies regions of significant structures in datasets. The structures
we locate are scale coherent, i.e., contain all frequencies across scales.
Our method is two-pass in nature. In the first pass, a spatial subdivi-
sion is obtained which delineates regions of high spatial frequency.
The subdivision is obtained by creating a correlation mask from the
wavelet transform. This step may require temporary padding of the
volume to create power-of-two dimensions. An octree embedding of
this mask provides the required subdivision. In the second phase each
block of the partition is coded separately using an appropriate func-
tion from a wavelet library. This step does not require any padding of
the original volume. Later, the wavelet coefficients in each of the
blocks are sorted and packed based on the presence of significant
structures. The visual content associated with coefficients within each
block is estimated by employing a computational model of the Human
Visual System (HVS). The final result is an embedded encoding of the

Figure 2. (a) Density around a right circular cylinder computed using first (left) and second order (right) upwind methods.
(b) Density computed around an airfoil at 0 (left), 1 (middle), and 4 (right) degree angles of attack. (Courtesy: John West,
DoD Major Shared Resource Center, US Army Corps of Engineers, Vicksburg, MS.)
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volume, wherein a ranking of coefficients is possible. Our multi-
resolution representation scheme can be very easily extended to
lossy or lossless coding. Similarly, it allows for:

• browsing of datasets allowing selective and embedded display

• comparative visualization of datasets

• lossy/lossless compression of floating point data

• progressive transmission, allowing the user to stop transmis-
sion at any desired time

Our attention to the problem arose when some scientists were
executing computational programs on a supercomputer at a very
remote site and viewing the results on workstations. The computa-
tional problem was the study of hydrodynamics around submarine
hulls (dataset 2). A structured curvilinear grid was employed to
model the domain around the submarine. Given the very slow link
(17 kilobytes per second) and the availability of a supercomputer it
seemed imperative to employ a representation scheme that was
amenable to efficient bandwidth utilization and provided useful
visualization. Useful implementation on a slow link is achieved
when the most important information is transmitted first. The grid
was sent separately or was already known a’priori  at each end of
the link. It was only the actual solution that had to be compressed
for this particular situation. In essence, we treat the solution as if it
were in the computational domain. Certainly this method will not
apply to unstructured meshes. This approach of not including the
grid geometry is far from very ideal, especially if grid simplifica-
tion is the desired goal. On the other hand, simplification entails
the elimination of certain grid cells and will require resampling. In
computational simulations unless the grid is adapted to the solution
at various epochs, it is perhaps moot or even incorrect to simplify
the grid. Convergence of the solution is often a very difficult task
and uncontrolled simplification can destroy the integrity of the
solution.

In Section 2 we motivate the need for a variable block sized
multiresolution representation and review past reported methods in
volume compression. In Section 3 we present our scheme for mul-
tiresolution volume representation and in Section 4 we present our
embedded progressive transmission scheme which allows a per-
ceptual ranking of structures. Results are presented in Section 5
and in Section 6 we draw conclusions and discuss future work.

2 BACKGROUND
In this section we describe the coding and analysis capabili-

ties of the wavelet transform. Later, we describe a particular com-
putational model of the human visual system. Our proposed
method includes this model to perceptually rank structures in a
dataset. The words signal, image, and volume are used synony-
mously in this paper. Also the words compression and coding are
employed to describe a representational technique.

Previous volume compression methods include predictive
methods [11], fractal methods [3], vector quantization (VQ) [28],
DCT [42], wavelets [9][13][26][27][32][34][38][39][40], and
gaussian pyramids [12]. The predictive method (followed by Huff-
man coding) reported in [11] provided sufficient improvement over
the standard UNIX utilities likegzip, but did not provide a high
level of compression. Also, it was not amenable to embedded cod-
ing for progressive transmission. Ning and Hesselink [28] used VQ
to compress volume data and achieved a high level of compression.
However, the method is again not very amenable to concurrent pro-
gressive transmission given the asymmetric nature of the coder and
decoder. The coding effort is generally orders of magnitude higher
than expended in the decoding component. The fractal technique

of [3] is expensive and is not amenable to progressive transmission.
Among the transform coding methods the DCT, wavelet, Gaussian
and Laplacian image pyramids have found common use. However,
the work reported in both [12] and [42] emphasizes less the com-
pression aspect and more the rendering of images from the com-
pressed domain. There exist other methods which have been
borrowed from image coding and are suitable for hardware imple-
mentation [19].

We now describe multiresolution representation schemes
based on wavelets. Our focus is on schemes which are (a) adaptive,
(b) embedded, and (c) assign perceptual saliency and hence rank-
ing to structures when employed in conjunction with a simple com-
putational model of the HVS. Such schemes will allow one to
achieve the goals of efficient concurrent and retrospective visual-
ization. Adaptive methods which are adept at capturing higher
order smooth (beyond edges) singularities and can locally adjust in
terms of spatial resolutions can provide more efficient representa-
tion schemes.

First Generation Wavelet Representations- In transform
Coding (TC) methods the image or volume is projected to a trans-
formed space spanned by adequate basis functions. The goal of all
TC methods is to de-correlate the signal and scale the energy in the
projected space so that a few coefficients can adequately represent
the signal. The wavelet transform has gained much popularity due
to some very attractive properties including compact support of the
basis functions and the ability to represent functions of arbitrary
smoothness [6]. Analysis and compression can be obtained by
retaining only a portion of the coefficients. The size of the retained
portion is dictated by the desired quality of the resulting image or
the smoothness of the function. It has been shown in [8] that an
image can be suitably represented by the firstN coefficients within
a certain error tolerance measured in spaces spanned by smooth
functions. Methods which retain onlyN coefficients are often clas-
sified asfirst generation methods[9][13][26][32][34][38]; they do
not attempt to characterize the behavior from the sub-band infor-
mation. Rather, they apply standard and computationally viable
techniques for compression and transmission.

Second-Generation Wavelet Representations - As pointed
out in [10], second generation methods are driven by structures in
an image. Moreover, it is essential that a human observer or a
model of the HVS be included in the coding scheme. These meth-
ods attempt to locate information in an image and then proceed
with coding the coefficients which exist in the identified areas.
Much information in an image is concentrated in a few regions.
These are dominated by structures characterized by discontinuities
in intensity and manifest as edges (images) and boundaries (vol-
umes). Mallat and Zhong [25] used spline wavelets to obtain a
redundant wavelet decomposition. The end result of their non-
orthogonal transform is a hierarchy of local absolute maximas and
hence multiscale edges. These maximas are not searched for;
instead a numerical procedure is used to characterize the Lipschitz
coefficients of singularities. Westermann [39] implemented the
same ideas to detect structures in a time-varying 3D volume. Edge-
based methods suffer from the disadvantage of being error prone in
the presence of noise or when the image has a profusion of small
features or texture. A significant method, wavelet probing, was
presented in [5] to segment the image into smooth regions which
are coded very efficiently. The identified edge regions are then
coded separately by employing the same technique. Although the
method may yield high coding efficiency, it does not facilitate the
rankings of structures as described in Fig. 1. The proposed method
fits in this same category.

Adaptive Methods: Adaptive methods which are adept at
capturing higher order smooth (beyond edges) singularities and
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can locally adjust in terms of spatial resolutions can provide more
efficient representation schemes. A compression and progressive
transmission scheme for visualization should maximize the infor-
mation presented while minimizing the data rate. This objective
can be explained by using an information-rate curve. If the infor-
mation in a data volume is uniformly distributed over the data
domain and the bit budget is uniformly allocated for each point,
this curve will be linear. In most cases, however, the information
contained in a dataset is non-uniformly distributed, resulting in a
non-linear curve. The desired information-rate curve should have a
sharp rise as close to the zero-rate as possible, so that most of the
data information can be visualized as early as possible. This is a
departure from the rate-distortion perspective normally espoused
in the image coding literature. To achieve the requirements of con-
current and retrospective visualization an embedded scheme can be
used, where the information is ranked by perceptual significance
and transmitted accordingly over the channel [32][43]. In [30] a
zerotree wavelet structure is created from the wavelet space. This
allows for a grouping of wavelet coefficients of similar significance
in a hierarchical fashion and facilitates an embedded representation
that is well suited for progressive transmission. In [18] this tech-
nique was expanded to include a computational model of the HVS.
Said and Perlman extended this algorithm and obtained superior
results [29].

Since the wavelet transform is performed using a single
mother wavelet, the transform is essentially signal independent. To
adapt to the statistical properties of the data, wavelet packet tech-
niques [4] decompose the signal by choosing from a library of
wavelet packets the wavelets that best represent the signal. How-
ever, the computational expense is still staggering and the wavelet
packet transform is far from robust. An aspect of the wavelet
packet transform can be usefully employed; spatial subdivision of
the image is conducted and normally a quad-/octree is used in con-
junction with the subdivision of the frequency bands. Each block
of the spatial subdivision can be coded with a different wavelet
basis, the choice being dictated by a variety of reasons including
measures of function smoothness.

Thus, we have described the basic rationale for our method
and outlined the methodology. Two essential elements are missing,
namely a technique to detect structures and a description of a com-
putational model of the HVS. We describe a methodology in Sec-
tion 3 for detecting structures across scales and end this section
with a description of the Contrast Sensitivity Function (CSF) and a
computational model of the HVS.

Human Visual System (HVS) - The human cortex is often
modeled as a linear system and its response to a visual excitation in
the receptive field is expressed as a convolution of the impulse
response of the visual cortex with the input stimulus. Equivalently,
the response to an input can be obtained by multiplying the Con-
trast Sensitivity Function (CSF) with the Fourier transform of the
input. The CSF measures the response of the visual system to dif-
ferent frequencies. It is important to note that the response is lower
for higher frequencies. Attempts have been made to measure the
CSF of the human visual system. For instance, Mannos and Sakri-
son [21], after conducting a series of psychophysical experiments
on human subjects, found that the CSF can be modeled by the
function in Equation 1 (Fig. 3a). Here,fs is spatial frequency in
cycles per degree.

(1)

A 2D (or a 3D) version can be easily obtained and is shown in
Fig. 3b. The discrete orthogonal wavelet transform does not serve
as a computational model for the HVS. To include the CSF into our

methods, a frequency decomposition induced by a dyadic wavelet
transform is imposed on the CSF (Fig. 3a). Thus, for each band a
weight can be computed which is then applied to the wavelet trans-
form. The coefficients at each level and location are modulated
using a perceptual weight obtained by integrating the CSF over the
area occupied by the band in a 3D frequency space. Fig. 3a shows
the CSF function mapped to image frequency and the superim-
posed wavelet transform subdivision in 1D. Thus, afterm levels of
the wavelet transform the weight is given as:

(2)

where FBm is the frequency subband in question

andA(FBm) is the width of the band. The weights are precomputed
and stored in a table. In Fig. 7b we report the normalized weights
for a 2D subdivision [18]. The weights are based on the assump-
tion that the image is viewed at a distance six times the image
height. In the following section we show how structures can be
adaptively detected.

3 ADAPTIVE STRUCTURE DETECTION
The volume representation scheme reported herein has the

four components shown in Fig. 4. The block representation allows
for the ranking and measurement of important information in a sig-
nal. The progressive transmission scheme requires another compo-
nent to order the blocks (Section 4). The first three components
facilitate the detection of significant structures while the fourth
component achieves the actual coding. We now describe each com-
ponent in detail.

Wavelet Transforms - We used both the dyadic wavelet
transform and the non-orthogonal wavelet transform of Mallat and
Zhong [25]. The biorthogonal wavelet transform is employed to
code the image in each block. The choice of the non-orthogonal
transform allows for a better characterization of the local spatial
frequencies of the underlying function. Moreover, it does not suffer
from the aliasing problems that the critically sampled dyadic trans-
form suffers from. The result of the wavelet transform is a pyramid
of detail subvolumes and a smooth subvolume. The subband vol-
umes are of the same size as the original volume.

In [35] a study of different biorthogonal wavelets for coding
efficiency was conducted. Our choice of the second wavelet was
dictated by that study. We chose the biorthogonal filter of second
order since it provides adequate results.The reported method
should work for any volume at any resolution. However, its effec-
tiveness depends on the partitioning of the volume into regions
which are then coded individually. Padding is required for resolu-
tions which are not powers-of-two for the first wavelet transform.
Once the partition is obtained the padded regions are discarded and
only the original volume is considered. More details on the wavelet
transform can be found in much reported work including [6][24]. It
now remains to identify the coefficients which contribute to struc-
tures in an image. We now provide some motivation of our basic
structure detection method. More details can be found in [22][23].

3.1  Wavelets As An Analysis Tool
The wavelet transform provides valuable information for the

space-frequency diagram or thescalogram[6][15]. A space-fre-
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quency diagram describes the frequency content of the image at a
pixel location at different scales of resolution. The impulse and the
infinitely long sinusoidal wave are extreme examples. The space-
frequency diagram for the impulse signal is defined at only one
instance in the space domain (localized) while it completely occu-
pies the frequency range (not localized). The situation is changed
when the sinusoidal signal is considered. Only one location of the
frequency spectrum is occupied (localization) while the signal per-
sists over all points in space. We now informally describe the shape
of the space-frequency diagram of any signal. We derive it from the
shape of a corresponding diagram of an impulse.

Space-frequency Diagram Of An Arbitrary Signal-The wavelet
transform of aDelta Dirac function δ centered atx=0 with respect
to a wavelet functionψ is given as:

(3)

The space frequency diagram (a - scale parameter;b - time/
space parameter), thus, has all frequencies. The set of points in the
half plane forms the so-calledcone-of-influence (Fig. 5a). Now
consider a function composed of the sum ofn deltas located at
x=xn, each scaled differently by a factorkn. From the property of
linearity [15] of the wavelet transform we get

(4)

The cone-of-influence is now shown in Fig. 5b. The cone is shifted
towards the smaller scales such that the bottom is outside the half
plane. Since all signals can be expressed as the summation of infi-
nitely manyDirac functions, it can be said that the wavelet trans-
form of all signals has a shifted cone form. It is our goal to
determine the intersection of the cone with the x-axis. The signifi-
cant structures populate only this spatial region. The rest of this
section describes the process of locating them and assigning
saliency to them.

Combining Function - The combining functionC is defined as
follows [22][23]. For a J-level wavelet decompositionW,at all x, C
exists and is given by

(5)

whereAj andDj, , are the sub-band functions at loca-
tion x. Thus, we obtain a floating point mask which has the same
size as the image. We now state some observations about the mask
and discuss scale-coherent structures.

Scale Coherent Structures -  implies the
absence of structures at that location. This arises from the cone-
like shape of the wavelet transform. Where
coherent structures exist and lie within the support of the cone. The
effectiveness of the method presented in this paper rests on the fol-
lowing observations:

• As J becomes large and approaches infinity (if possible), the
result of the combining function should approach the support of the
continuous wavelet transform. The idea behind the combining
function is simple. The smallest scales have the smallest supports
and hence by multiplying across scales one obtains a size equal to
the size of the smallest support. Similar observations and argu-
ments were made for images elsewhere [1].

• It is possible that a non-dyadic powers-of-two transform will
yield a better mask since the space-frequency diagram is measured
at a large number of scale positions. Thus, a more accurate mask
can be obtained if anM-band (M>2) spectral subdivision is con-
ducted.

• In Fig. 6 we show the effect of combining. The masks in Fig. 6b
and Fig. 6c have been greatly exaggerated for display purposes.The
former is obtained through the use of the orthogonal transform
while the latter is obtained from the application of the non-orthog-
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Figure 3.(a) 1-D Contrast Sensitivity Function. The dyadic subdivision (of the wavelet transform) is imposed
on the image frequency. (b) 2D Version of the CSF.
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onal transform of [25]. The mask in Fig. 6c is smoother. The masks
are from two different yet nearby locations which contain similar
structures. The product is high at locations near the point of dis-
continuities. The product locates correlated structures across
scales. The number of scales, the size of the structures, and the
wavelet functions used also contribute to the effectiveness of the
combining algorithm.

• Noise reduction occurs in the product. Un-correlated additive
noise in the spatial domain becomes correlated in the wavelet
domain [15]. However, the size of the correlation is smaller in the
coarser scales. Thus, in the smooth space measured byAj, un-cor-

related noise is suppressed and the coefficients arising from the
noise process measure close to zero.

• If f is Lipschitz (α), the functionf is defined as

Essentially, the functionf differs from an-degree polynomial by a
bounded oscillatory fraction. All known practical functions are
known to satisfy this definition of a Lipschitz function. The wavelet
coefficients at levelj are bounded [17] as shown:

(6)

The combining function is then bounded by

(7)

where the functionS(J) is the sum of the positive integers up toJ.
Other functions may be used instead of the product. The logarithm
may also be employed. In that case the combining function is
bounded as

(8)

Since the mask depends on the value of α, the value of the mask is
an indication of the significance of the singularity. Larger values of
α indicate presence of significant singularities. Hence the above
arguments for the effectiveness of the mask in capturing singulari-
ties are valid.

3.2  Scale-Coherent Structure Detection
Edge detection captures all the zero crossings of the second

derivative of a function; a mask delineates all high frequency
regions. If the wavelet had a regularity ofonethen the combining
mask would contain mostly edges. Our method employs simple
strategies to combine information across scales and is rooted in the
approximation theory perspective of the wavelet transform [15].
Starck et al. [31] report a combining method which employs the
sum of binary thresholded wavelet coefficients to create a mask.
The binarization process loses important detail and can introduce
blockiness. We, however, explore the use of the product function.
The product of the wavelet transform is a more natural choice since
it arises from the shape of the wavelet transform. The location of
structures and the assignment of saliency values is, therefore, more
accurate. Xu et al. independently developed an algorithm based on
the product [41]. Their motivation was based on the fact that corre-
lation of structures is best captured by the product. Also, they
attempt to find edges rather than regions of arbitrary singularity.
Our motivation stems from the detection of structures, and denois-
ing is a component in the process. By using the product of the
wavelet transform, we obtain a mask which identifies the location
of structures and assigns them saliencies. The wavelet transform of
the image and its inverse transform form the first and last stages of
the algorithm, respectively. The other components of the algorithm
extract a minimal possible representation of the image in terms of
coherent structures.

Denoising -CFS datasets are not tainted with as much noise
as those from medical scanners are. Uncertainty arising from com-
putational inaccuracies, number representations (truncation, over-
flow, and underflow), and grid tolerances does exist. The ensuing
noise can be suitably modeled with a Gaussian distribution func-
tion. This characterization although not paramount to the function-
ing of many numerical schemes does allow for better location of
features. As described in Section 4, the process of combining
inherently denoises. It is, however, useful to denoise even before
generating the sub-band mask. That way we have a minimum num-
ber of coefficients that go into the construction of the mask. We
resort to the statistical thresholding methods of Donohoe and
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Figure 5. Cone-of-influence. The y-axis measures scale in a decreasing fashion. (a) Delta Dirac Function - The half-plane is a
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Johnstone [7]. We implement an adaptive thresholding scheme
which determines the threshold at different levels from a noise
model.

Feature Based Thresholding - More coefficients can be
eliminated based on the relative magnitude of the product mask. A
typical discriminating function shown in Equation 10 is employed
to remove insignificant features and to shrink the dynamic range.
We describe the equation for images. The quantityC(i,j) is the
mask value at pixel(i,j) , Cmax is the maximum value of the mask,

g is a tunable parameter, andR is the current dynamic range. The
value of g controls the number of structures (and hence coeffi-
cients). Values between1.1 and1.5 have been found to be accept-
able for most images. Higher values ofg degrade the visual quality
of the image.

(9)

Wherever the sub-band mask is set to zero, the corresponding
coefficients in the pyramid have to be set to zero. In other words,
the sub-band mask has to be propagated back into the multiresolu-
tion pyramid. As a result of this thresholding operation, only the
coefficients contributing to coherent features remain. Since, the
subband images are the same size as the original image, the thresh-
olding becomes trivial.

3.3  Octree Subdivision of the Mask
The spatial subdivision allows the identification of coherent

regions in the image. Several options exist including region grow-
ing and recursive spatial decomposition methods. Region growing
algorithms are not very amenable to user control and can result in
blocks of odd shape and size. Hence we resort to recursive spatial
subdivision methods based on quad-/octrees. The level of the tree
is controlled by the user thus producing square/cubic blocks. Oth-
erwise, a crude homogeneity measure can be employed to control
the subdivision process. A threshold measuring the amount of
information is used. The subdivision process stops when the
amount of information is small as measured by the user threshold.
Thus, a larger threshold would yield larger blocks. We show the
spatial subdivision obtained using a slice of the data in Fig. 6d.
There will be some blocks which do not carry any information;
they arise in the proximity of the discontinuities. The effectiveness
of the adaptive partitioning scheme is made evident in Section 5
when the performance is compared against fixed block partitioning
schemes. In the following section we describe how the wavelet
coefficients in the blocks can be packed for progressive transmis-
sion, i.e., our embedded representation scheme.

4 RANKING OF STRUCTURES
In this section we describe the packing of data for progressive
transmission. The blocks obtained from the spatial subdivision of
the mask are sorted based on the information content within each
block. A single bitstream is created from the wavelet transform
coefficients of the partitioned blocks for transmission or storage.
The rationale behind this scheme is to insert the most vital infor-
mation at the beginning of the bitstream. Such a scheme then
allows for transmission until the desired target rate is achieved. The
information content can be measured in a variety of ways including
the mean-square error. However, the MSE is not a viable measure
of saliency in an image [33]. Rather, a weighted MSE based on
perceptual considerations is gaining much popularity and is being
used in image coding extensively [37]. The resulting bitstream is
constructed from coefficients obtained from blocks in an order

determined by the presence of significant structures.

We employ a 3D version of the CSF to code a given volume.
In reality, there is no physical justification for such a function.
However, it is not uncommon to employ modulation transfer func-
tions (MTF) to alter the significance of coefficients in a trans-
formed space. Thus, we can conceivably construct a device which
accentuates frequencies in the central portion of a 3D spectrum. To
avoid unnecessary confusion we, however, use the terms CSF and
MTF synonymously. The perceptual weighting of wavelet coeffi-
cients is commonly done in the image coding literature. The modu-
lation with a perceptual function allows one to give some bands
higher weights. Thus, if an inverse wavelet transform is performed
and a visualization is performed, the structures which are perceptu-
ally significant are enhanced while the less significant ones are
subdued. The pertinent visualization technique can influence per-
ception of the phenomenon. However, a choice and ranking of
structures based on perceptual significance does not impair the per-
ceptual abilities of the viewer.

In reality we need a function which allows us to rank the coef-
ficients. It seemed convenient to use the perceptual function. Our
weighting scheme is an approximate one. The perception modula-
tion function should be applied to the images; however, we apply it
early on in the visualization pipeline. In the case of parallel projec-
tion the application of the 3D function is not improper. In reality
the 3D function is a simple extension of a 2D function; a parallel
projection will only alter a scaling factor but not the essential char-
acteristics of this function. We now show how the perceptual
weight can be incorporated into a packing scheme.

Perceptual Weighted Embedded Packing Scheme - The
following scheme is designed to select the next significant coeffi-
cient based on the structure information estimated in each block.
As a result a wavelet coefficient bitstream is constructed with the
coefficients carrying the most information being placed in the
stream as early as possible. After data partitioning, the data volume
is represented byN variable-size blocks,Bi, . Each block
Bi has the following entities:

• The starting spatial address (i,j,k) and the block size.

• The information quantity contained in the block,Hi, which is
defined as the sum of all correlation mask values contained in
the block.

• The wavelet coefficients computed for the data block.

The measurement of the information in a block does not have
to be exact. As long as Hi is a monotonic function it will suffice.
Since the mask is created from the product and non-linearly
enhanced with a logarithm function,Hi will be monotonic. Blocks
of the same size will have the same CSF weight but differentHis.
Thus the visual significance of a wavelet coefficient is a relative
quantity and is determined by two factors:

• the quantity of information in the block to which the wavelet
coefficient belongs, namely Hi

• the position of the wavelet coefficient inside the block.

During embedding, the relative significance of the blocks and
coefficients has to be constantly updated. To do so, we calculate for
each blockRHi, the remaining information, using a CSF which is
pre-computed for each possible block size. This function should
have the following properties:

(10)
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where Ni is the number of coefficients in a block.

Thus, a2k x 2k x 2k block will have8k3 coefficients, each
measuring the information available in a subband. In the case of a
2-level, 2D wavelet transform, the dyadic decomposition results in
the subdivision shown in Fig. 7. Each band in the dyadic decompo-
sition is pre-computed and assigned a value, i.e., each position in
the block (i,j,k) is assigned a normalized weightNCSF(i,j,k) (prefix
N indicating normalization). A possible candidate for the function
RH is

(11)

The functionRH essentially computes the perceptual informa-
tion that can still be assigned to the block afterm coefficients have
been embedded. When a coefficient is embedded in the bitstream
the corresponding normalized weight is subtracted from the value
of RH. The coefficients inside a block are selected in a zig-zag
order similar to the selection scheme in JPEG [36]. Once a coeffi-
cient is embedded, the corresponding perceptual weight is sub-
tracted. This scheme distinguishes between blocks that have the
same spatial dimension but different information content. Given
our octree spatial subdivision of the original domain, several such
similar sized blocks can exist, some with little information. The

packing algorithm can be summarized as follows:

Step 1: Sort the blocks in descending order, usingHi as the

key.

Step 2: Insert into the bitstream the lowest subband coefficient
for each block and updateRHi accordingly. Re-sort the blocks

based onRHi.

Step 3: Insert into the bitstream coefficients (determined by
theZ patterns) from the first block in the sequence and update
RHi until the first block is no longer the most significant

block.

Step 4: Insert-sort the first block into the block sequence
based onRHi; go back to Step 3. In [29][30] a variant of this

embedded packing scheme is described.

The block addresses and the ordering information must be
coded and stored precisely first in the bitstream. This can be done
either by:

• coding the block addresses in the ordered sequence, or

RHi m( ) Hi 1 NCSF i j k, ,( )

m Embedded∈

∑–
 
 
 

=

Figure 6. Detection of scale coherent structures and their enhancement. (a) Simulation of flow around a turbine blade
(Source: Mark Janus, ERC, MSU), (b) Correlation (color quantized using the spectral color table) mask for a 2D slice in
computational domain using the orthogonal transform. (c) Correlation (8-bit grayscale) mask using the non-orthogonal
transform of a slice near the first one. The masks are mostly sparse, with large values near regions of activity. The orthog-
onal mask is more blocky. (d) Spatial subdivision imposed on the original domain. The arrows mark important structures.
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• creating a ‘bit-volume’ and putting the block’s sequence num-
ber at the block’s reference address in the volume, and then
coding the bit-volume.

We now provide the results of applying our coding scheme to
a dataset from a simulation.

5 RESULTS
We tested our methods on 2 datasets. The first one is obtained

from a simulation of the non-steady flow of fluid between turbine
blades. The flow of fluid is axi-symmetric. Fig. 6a shows a slice of
the density field juxtaposed with the body of the turbine [16]. The
regions of interest are the leading and trailing edges of the blade
and the tip of the propeller. The grid is curvilinear and is of size
69x43x15. The solution of the simulation yielded two scalar fields
(density,ρ; energy,e) and a vector field (u, v, w). We do not com-
press the grid in this exercise, rather we restrict ourselves to the
scalar fields and the components of the velocity field. Thus, the
grid file and the compressed solution comprise the data that needs
to be transmitted or stored. To determine the correlation mask we
create a larger grid of size128x64x16 through zero-padding. An
octree subdivision of the mask provides the required blocking.
Starting with the original data in each block, we then perform a
wavelet transform. Finally the coefficients and the blocks are all
embedded into a bitstream. The orthogonal wavelet transform was
employed to obtain the embedded representation.

We selected another dataset (Fig. 9a) on which to test our
technique. Since it was of mutual interest, we choose to attack con-
current visualization of an evolving flow. The volume is divided
into 16 zones and horizontal symmetry is assumed so that the flow
is only computed in8 zones,4 in the front and 4 in the back, each
zone spanning a45 degree cylindrical wedge. Each zone is of size
81x73x17. The purpose of the simulation was to determine inte-
grated quantities such as thrust and torque at various angles of
attack. In the picture a cutting plane in thek direction (k=1 for zone
1) is shown with the pressure (a derived quantity) mapped onto it.
A i slicing plane ati=60 in zone1 is shown in green. A slicing
plane atk=1 in zone 2 is shown in red. The colormap used in all of
the zone 3, timestep 2 (qq32) data is also shown. We now discuss
the rate-distortion and rate-information curves for the test datasets.
The non-orthogonal wavelet transform was employed to determine
the correlation mask for the second dataset.

Rate-Distortion Curve - The rate-distortion curve is plotted
for the components of the first dataset in Fig. 8a. We define the rate
to be the percent of the coefficients used. Thus a rate of one (1)
would imply that all coefficients are used, while a rate of zero
implies that none are used. We plot the distortion for all the fields.
The distortion at a given rate is measured by finding the difference
between the actual and the partially reconstructed dataset in the
mean-square-error (MSE) sense. It is evident that the degradation
is non-uniform over the various fields. Thev and thew-component
of the velocity yield similar behavior; they require that80% of the
data be used to obtain a very desirable error of60dB. Given the
axi-symmetric flow most disturbances are not in the principal flow
direction. In reality, this is a very encouraging statistic. The other
fields fare even better and the same distortion is obtained at the
even lower rate of20%. Essentially, the distribution of structures is
very sparse and the datasets are amenable to extreme compression.

We also compared the rate-distortion performance for differ-
ent partitioning schemes. The results for dataset 2 are plotted in
Fig. 10. One can see that the distortion among the various quanti-
ties is more spread than in dataset 1. A reason for this observation
could be the non-convergence of the solution. The adaptive
schemes show more graceful degradation. The partition with
higher threshold (0.5) has more desirable characteristics. The
parameteru (the horizontal velocity) exhibits seemingly anoma-
lous behavior, since the distortion is constant for the range of val-
ues plotted. A plausible explanation is that the submarine’s motion
is along the same direction and thus this component of the velocity
is constant. The images in Fig. 9c corroborate the rate-distortion
curves.

Information-Rate Curve - We also plot the information that
is embedded in the bitstream at different rates. The information
embedded is given by the quantityE, defined as:

(12)

Both the quantitiesHi andRHi are defined in Section 4. The
denominator in the ratio measures the information content and is
computed as the sum of the mask values over all the blocks. In
essence it measures the information in terms of significant struc-
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Figure 7. Embedding of Dyadic Subbands. (a) The subband LL1 has been split into 4 more subbands.
Each of the 4 subbands of the 2-level transform has an associated coefficient. The selection of the bands
and within bands is shown in the form of Z. Thus the order among the subbands is LL1, LH1, HL1 and HH1.
In lieu of LL1 the subbands LL2, LH2, HL2 and HH2 are embedded. (b) The normalized weights for 2-level
decomposition of the CSF. The weights are used in the computation of the remaining information (RHi)
function.
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tures. The numerator, on the other hand, measures the information
retained.

Although the rate-distortion curve is different for at least two
of the components, the information-rate curve is similar for all of
the parameters of dataset 1 (Fig. 8b). This is the case since we
measure information in terms of structures as captured by the
mask. The masks of all five components are very similar signifying
that the regions of discontinuities are similar. Since the quantityE
is a gross measure of perceptually significant structures in a
dataset, the quantity evaluates to the same value for all compo-
nents. However, the number of significant blocks is much less for
the v, w components indicating that significant structures in these
datasets are much sharper or discontinuous. Thus, the rate-distor-
tion curve is less steep and requires more coefficients to recon-
struct. For dataset 2 we show the rate-information curve for the
adaptive schemes (Fig. 11). The lower threshold seems to facilitate
a better characterization of the information content.

Progressive Iso-surface Rendering - To show the efficiency
of our approach we display the iso-surfaces for a derived quantity,
namely pressure. We use FAST [2], a tool often used by CFS engi-
neers to visualize their solution datasets (Note: The checker-board
pattern in the background of many of the images is due to a well-
known artifact of the screen door transparency rendering process
used in FAST). Note that we did not take into account the uncer-
tainty introduced by the visualization process itself. For incom-
pressible flow, pressure at any point can be computed as follows:

(13)

whereγ is a gas constant.

Dataset 1 - For a pressure of0.75 (the range of pressure is
[0.44,1.02]) Fig. 1a shows the iso-surfaces at the full normalized
rate. We see a profusion of surfaces of varying smoothness and
curvature. The iso-surfaces at a rate of20% is shown in Fig. 1b. It
is again worthwhile noting that the highly curved surface in the
middle is captured with high fidelity even at20%. The smoother
surface at the extreme right is captured accurately at the rate of
30% (not shown). It is important to note that even at a rate of20%
the iso-surface along the blade is captured at very high fidelity.
This is a testimony to the fact that our packing scheme was effec-
tive in embedding significant structures very early in the bitstream.
Another important observation is that the behavior of our scheme
was not affected even though we applied our methods on a non-lin-
ear derived quantity, namely pressure. The results contained in [9]
do not show the same amount of structure-sensitivity; instead the
degradation at rates less than full is more uniform. In [9] CFS
datasets are compressed using a non-adaptive blocking scheme.

Dataset 2 - Since the solution has not converged there is no one
correct pressure value to visualize. Thus we need to make some
reasonable choice. In Fig. 9b we show the isosurfaces for pressure
values of1.3, 1.0, and0.7. The spatial extent of the iso-surface is
inversely proportional to the pressure. The pressure ranges from
-1.2 to 2.6 within the volume. The small white circle is a glyph at
i=13, j=33 to provide some indication of the size of the isosurface
plume in grid coordinates, since we do not want the shape of the
isosurface to be influenced by the interpolating errors. We will use
the 1.3 value for further presentation herein. The results we report
are consistent for all 3 isosurface values, but only the results for
pressure of 1.3 is shown for clarity.

The question naturally arises as to how much improvement is there

with the masking and variable size blocks. In Fig. 9c we demon-
strate just how much. Sending only 10% of the coefficients, the
isosurface for pressure of value 1.3 produces a rendition very close
to that obtained when using all of the coefficients. Note that both
fixed size block levels (43 and 83) produce poor reproductions of
the correct plume. In zones 2,4,6, and 8 there exist two low pres-
sure regions along the body. This is shown in Fig. 12 for zone2.
Note the iso-surface quality even with only 10% of the coefficients
retained. The smaller isosurface at the very end of the body is visi-
ble in the lower right of each panel in Fig. 12a, near the dense
nearly-vertical grid lines. In Fig. 12b is a zoomed version of the
iso-surface in the low pressure region formed at the trailing end of
the submarine. The glyph is ati=43, j=23, so the isosurface slices
approximately20x15 grid cells. The colors are ordered as for the
pressure field in zone 3, but the range in zone2 is from -2.64to
-0.17.

The encoder we used is designed for testing and the timings
for it are not indicative of how fast it could be. The non-optimized
decoder runs in about ten seconds on an Silicon Graphics Indigo 2
with a 100 MhZ R4400 CPU. Compressing floating point numbers
to achieve high compression rates is not a trivial task. Usually, an
entropy scheme like Huffman coding or even vector quantization
can be employed to compress the wavelet coefficients [9]. It suf-
fices to say that any further compression and quantization schemes
in the wavelet domain will only enhance the efficiency of the
reported scheme. The decoding cost is also small given the regular
pattern of embedding the coefficients and the fact that biorthogonal
wavelets were chosen to actually encode the blocks.

6 CONCLUSIONS AND FUTURE WORK
We presented a multiresolution representation of a volume

that is amenable to high compression ratios and progressive trans-
mission. We implemented a better method of correlation mask gen-
eration than that used in our earlier work [43]. Essentially we
replaced the dyadic orthogonal transform with a non-orthogonal
one. Results on two significantly different datasets are shown.
Finally, we compared the performance of the adaptive partitioning
methods with fixed block methods. The results obtained bear testi-
mony to the value of the method. The method is computationally
cheap and can include aspects of the Human Visual System easily.
Improvements can come in the form of:

• better methods to determine the correlation mask

• better packing schemes

• adaptive choice of the wavelet function from a library

New work can include:

• further quantization of the coefficients

• detecting coherency between successive frames in a time vary-
ing simulation

• datasets from other domains (medical) and modalities

• compression of geometry
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Figure 9.  Flow around a submarine
hull. (a) Basic configuration. The
complete geometry has 8 zones, 4 in
front and 4 behind. The pressure
variations are shown on slice planes for
various zones of the curvilinear grid. (b)
For the same octree subdivision of the
mask (threshold =0.5) and rate (=10%)
pressure thresholds of 1.3, 1.0 and 0.7
are visualized in zone 3 (front of
submarine). (c) The efficacy of the
adaptive partition is shown. The iso-
surface for the pressure value of 1.3 and
rate 10% is displayed for a variety of
partitioning strategies. Two fixed size
partitioning strategies are used. Cubes
of size 43 and 83 are used and
compared with partitions obtained when
thresholds of 0.5, 0.4, 0.3 and 0.2 are
used. It is clear that adaptive partitions
are superior, especially for larger values
of thresholds. Fixed partitions result in
blocky iso-surfaces.

(a)

(b)

(c)
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Figure 10. Rate Distortion Curves for dataset 2. (a) Fixed partition of size 83 of mask. Adaptive partition with (b) low threshold (c) high
threshold.
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Figure 11. Information-curve performance of adaptive partitioning. (a) Threshold = 0.1 (b) Threshold = 0.5.
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Figure 12. Iso-surface renderings of pressure (value = -1.2) of zone 2. (a) Different rates and same adaptive partition. (b) The
lower images are zoomed versions of the above.
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